The Influence of Pressure on the Liquid Hold-up in a Cocurrent Gas-liquid Trickle-bed Reactor Operating at Low Gas Velocities

نویسندگان

  • W.
  • A. WAMMES
  • S. J. MECHIELSEN
چکیده

The influence of reactor pressure up to 6.0 MPa on the dynamic liquid hold-up in the trickle-flow regime with superficial gas velocities up to 5.2 cm/s has been investigated for water, ethanol and aqueous 40% ethyleneglycol, with nitrogen as the gas phase. Without gas flow, i.e. single-liquid trickle-flow operation, the reactor pressure has no influence on the dynamic liquid hold-up, which can be well correlated by means of the Reynolds and Galileo numbers. For Re, < 11 the hold-up is proportional to Ref’.36 and for Re, > 15 to Rey5’. This is probably due to a transition between laminar and turbulent film flow. According to the literature the dynamic liquid hold-up is not affected by low gas velocities under atmospheric conditions. The experiments show that in the case of two-phase flow operation at elevated pressures the hold-up decreases at relatively low gas velocities and even more so at higher pressures. This effect has been explained quantitatively by means of the ratio between the pressure gradient and the gravitational force. In addition, the change in the dependence of fldyn on Re, has not been observed anymore: at low Reynolds numbers the hold-up is already proportional to RLZ~‘.~~.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved numerical simulation of the low temperature Fischer-Tropsch synthesis in a trickle bed reactor

Abstract Gas to liquid (GTL) process involves heterogeneous catalytic chemical reactions that convert synthesis gas to hydrocarbons and water vapor. A three phase reactor, called Low temperature Fischer-Tropsch (LTFT) is commonly applied for GTL process. In this reactor the gaseous phase includes the synthesis gas, light hydrocarbons and water vapor, the liquid phase is a mixture of the h...

متن کامل

DEVELOPMENT OF A PELLET SCALE MODEL FOR TRICKLE BED REACTOR USING CFD TECHNIQUES

In this study, a pellet scale model was developed for trickle bed reactor utilizing CFD techniques. Drag coefficients were calculated numerically at different velocities and bulk porosities in the case of single phase flow through the dry bed. The simulation results were then compared with the prediction of Kozeny-Carman (K-C) equation. The results indicated that drag coefficients calculated fr...

متن کامل

CFD Simulation of Porosity and Particle Diameter Influence on Wall-to-Bed Heat Transfer in Trickle Bed Reactors

Wall-to-bed (or wall-to-fluid) heat transfer issues in trickle bed reactors (TBR) has an important impact on operation and efficiency in this category of reactors. In this study, the hydrodynamic and thermal behavior of trickle bed reactors was simulated by means of computational fluid dynamics (CFD) technique. The multiphase behavior of trickle bed reactor was studied by the implementation of ...

متن کامل

Analysis of Foaming Flow Instabilities for Dynamic Liquid Saturation in Trickle Bed Reactor

The effects of different parameters on the hydrodynamics of trickle bed reactors were discussed for Newtonian and non-Newtonian foaming systems. The varying parameters are varying liquid velocities, gas flow velocities and surface tension. The range for gas velocity is particularly large, thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been used to c...

متن کامل

Hydrodynamics and mass transfer inthree-phase airlift reactors for activated Carbon and sludge filtration

A bioreactor refers to any manufactured or engineered device that supports a biologically active environment. These kinds of reactors are designed to treat wastewater treatment. Volumetric mass transfer coefficient and the effect of superficial gas velocity, as the most important operational factor on hydrodynamics, in three-phase airlift reactors are investigated in this study. The experiments...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001